Chapter 15: Derivatives

What you need to KNOW
\(\left.$$
\begin{array}{|l|l|l|}\hline \text { Big Idea } & \text { What you use } & \text { An example } \\
\hline \begin{array}{l}\text { Know the limit } \\
\text { definition of a } \\
\text { derivative }\end{array} & & \begin{array}{l}\text { Find the formula for the slope of a secant line from time } \mathrm{x} \text { to time } \mathrm{x}+\Delta x \text { for the } \\
\text { function } f(x)=2 x-3 . \text { Show work. }\end{array} \\
\hline \begin{array}{l}\text { Know some } \\
\text { basic physics }\end{array} & \begin{array}{l}\text { If you see "average velocity from } \\
\text { time a to time b", then that is the } \\
\text { slope, the average rate of change } \\
\text { between given points. } \\
\text { Position }\end{array} & \begin{array}{l}\text { The height of an object at t seconds with initial velocity of } 50 \text { ft/sec is given by } \\
h(t)=50 t-16 t^{2} .\end{array}
$$

a. find the average rate of change from time 2 seconds to 4 seconds\end{array}\right\}\)| Instantaneous Velocity |
| :--- |
| b. What is the formula for instantaneous velocity of the object? Use the |
| formula to find the velocity of the ball at 3 seconds. |

Big Idea	What you use	An example
Write an equation for a tangent line for a function at a particular point		Write the equation of the tangent line for the function $f(x)=2 x^{3}-3 x^{2}-10 x \quad$ at $x=3$. Show all work in determining this equation.

Big Idea	What you use	An example
Derivative basics		Using your knowledge of derivatives, answer the following questions: a. What is a tangent line and what does it tell you? b. What is a secant line? c. What is instantaneous velocity and how do you find it? d. What is instantaneous acceleration and how do you find it? e. The derivative function is really the \qquad function of the original function. f. The \qquad of the derivative are the \qquad points of the original function. Given the function $f(x)=6 x^{7}-9 x^{4}+3 x^{2}+2$, find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
Product Rule		$f(x)=(2 x-4) \sin x$

Big Idea	What you use	An example
Quotient Rule		$f(x)=\frac{2 x-7}{e^{x}}$
Product and		
Quotient Rule		

Big Idea	What you use	An example
Chain Rule		$f(x)=\cos \left(x^{2}-4\right)$

