Chapter 15: Derivatives What you need to KNOW

Big Idea	What you use	An example
Know the limit definition of a derivative	$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$	Find the formula for the slope of a secant line from time to time $x+\Delta x$ for the function $f(x) = 2x - 3$. Show work.
Know some basic physics	If you see "average velocity from time a to time b", then that is the slope, the average rate of change between given points. Position F(x) Instantaneous Velocity F'(x) Instantaneous Acceleration F"(x)	The height of an object at t seconds with initial velocity of 50 ft/sec is given by $h(t) = 50t - 16t^2$. a. find the average rate of change from time 2 seconds to 4 seconds $h(2) = 36$ $h(4) = -56$ b. What is the formula for instantaneous velocity of the object? Use the formula to find the velocity of the ball at 3 seconds. $h'(t) = -32t + 50$ $h'(3) = -46 \text{ ft/sec}$ c. What is the formula for the instantaneous acceleration of the object? Use the formula to find the acceleration at 3 seconds. $h''(t) = -32t + 50$ $h''(t) = -32t + 50t - 16t - 50t - 16t + 50t - 50t - 50t - 16t + 50t - 50t$

Big Idea	What you use	An example	
Read a graph to answer some basic questions about limits and rate of change	f(x) replace x = # to get y f'(x) replace x to get m y-y, = m(x-x,)	Write the equation of the tangent line for the function $f(x) = 2x^{3} - 3x^{2} - 10x at x = 3.$ Show all work in determining this equation. $f(3) = 2(3)^{3} - 3(3)^{2} - 10(3)$ $= -3$ $= -3$ $f'(x) = 6x^{2} - 6x - 10$ $f'(3) = 6(3)^{2} - 6(3) - 10$ $= 26$	
		Given the function graphed below, find $f(-2)$ and $\lim_{x\to -2} f(x)$. Is $f(x)$ continuous at $x = -2$?	
	350.8E = (25.40.).A	Find the average rate of change from $x = -3$ to $x = 3$. $(-3, -2) (3, 1)$ $\frac{4y}{\Delta x} = \frac{3}{6} = \boxed{\frac{1}{2}}$	1

Big Idea	What you use	An example
Derivative basics	Figure (x) Felt win Figure Figure	Using your knowledge of derivatives, answer the following questions: a. What is a tangent line and what does it tell you? Instantoneus welocity @ salue three. b. What is a secant line? Avens, velocity between 2 times (2 prints) c. What is instantaneous velocity and how do you find it? Slove of tangent line (find f'(x) + plus in x) d. What is instantaneous acceleration and how do you find it? 2nd derivative e. The derivative function is really the
Product Rule	1d2 + 2d1	$f'(x) = (2x-4)\sin x$ $f'(x) = (2x-4)(\cos x) + (\sin x)(2)$ $= 2x\cos x - 4\cos x + 2\sinh x$

Big Idea	What you use	An example
Quotient Rule	low(dhigh) - high (dlum) denum 2	$f'(x) = \frac{2x - 7}{e^x}$ $f'(x) = \frac{(e^x)(z) - (2x - 7)(e^x)}{(e^x)^2}$ $\frac{2e^x - 2xe^x + 7e^x}{(e^x)^2}$ $= \frac{-2x + 9}{e^x}$
Product and Quotient Rule		$y = \frac{xe^x}{x^2 + 2}$
	Skip this row	

Big Idea	What you use	An example
Chain Rule	u'.f'(u)	$f(x) = \cos(x^2 - 4)$ $U = x^2 - 4$ $U' = 2x$ $F'(u) = -\sin u$
		f'(x)=(2x)(-sih (x2-4))
		$= \left(-2 \times \sinh(x^2 - 4)\right)$
		$f(x) = \ln(5x^3 - 2x + 8)$
		$u = 5x^3 - 2x + 8$ $f(u) = 1n u$ $u' = 15x^2 - 2$ $f'(u) = \frac{1}{u}$
		$f'(x) = (15x^2-2)(\frac{1}{5x^3-2x+8})$ $= \frac{15x^2-2}{5x^3-2x+8}$