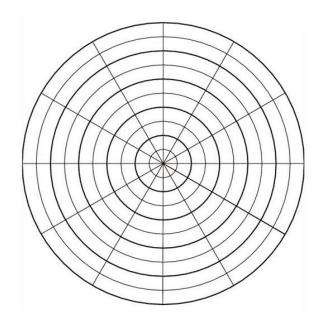
# 9.1 Polar Coordinates

### **Objectives:**

- Graph points in polar coordinates.
- Graph simple polar equations.
- Determine the distance between two points with polar coordinates.

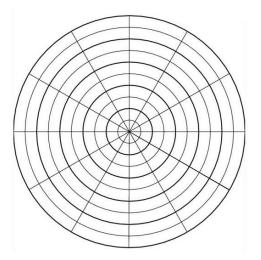
## **POLAR FORM:**


**Theorem**: For any particular values of r and  $\theta$ , the following polar coordinate representations name the same point.

**a.**  $[r, \theta]$  **b.**  $[r, \theta + 2\pi n]$ , for all integers *n* **c.**  $[-r, \theta + (2n+1)\pi]$  for all integers *n* 

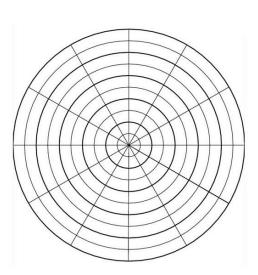
#### Example 1:

Graph each of the following polar coordinates on the grid below. Label each point! a.  $A = [3, 60^{\circ}]$  c.  $C = [-2, -135^{\circ}]$ 


b. 
$$B = \left[-1.5, \frac{7\pi}{6}\right]$$
 d.  $D = [5, -90^{\circ}]$ 

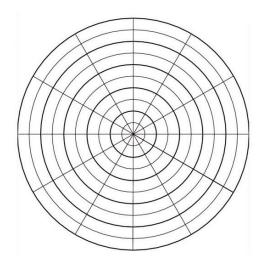


## Example 2:


•

Name 3 other polar coordinates that will represent the point [3, 150°] with the restriction that  $-360^{\circ} \le \theta \le 360^{\circ}$ 




Example 3: Graph each polar equation:

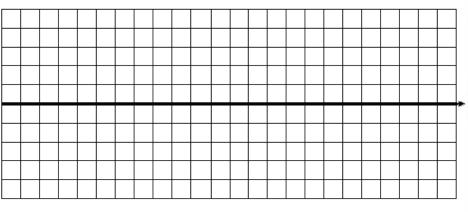
a. r = 3b.  $\theta = \frac{3\pi}{4}$ 

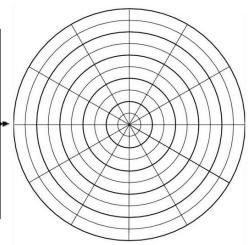


## Example 4:

While mapping out a level site, a surveyor identifies a landmark 450 feet away and 30° to the left and another landmark 600 feet away and 50° to the right. What is the distance between the two landmarks?

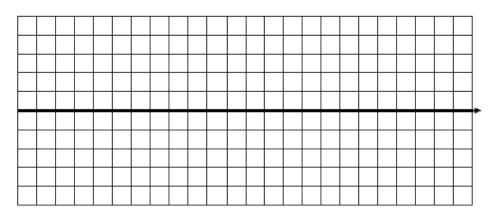


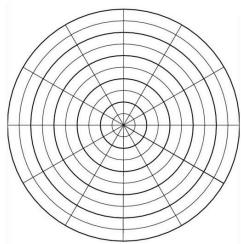

# 9.2 Graphs of Polar Equation


# **Objectives:**

- Graph Polar Equations
- Identify the different types of Polar Graphs from their equations

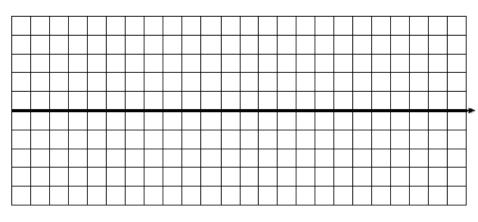
| Curve                 | Rose                                                                                                         | Limacon with a<br>loop                                      | Limacon with a<br>dimple                    | Cardioid                                    |
|-----------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------|---------------------------------------------|
| Polar<br>Equation     | $r = a\cos(n\theta)$ $r = a\sin(n\theta)$                                                                    | $r = a + b\cos\theta$ $r = a + b\sin\theta$                 | $r = a + b\cos\theta$ $r = a + b\sin\theta$ | $r = a + a\cos\theta$ $r = a + a\sin\theta$ |
|                       | *n is a pos. Int.                                                                                            | a < b                                                       | a > b                                       | *Special case of Limacon                    |
| General<br>Graph      | ×                                                                                                            |                                                             |                                             |                                             |
| Tips and<br>Tricks ;) | <i>a</i> = length of petal                                                                                   | <i>a</i> < <i>b</i> means there is a loop.                  | a > b means there is a dimple.              | Centered at $(0, 0)$<br>when $a = b$ .      |
|                       | If <i>n</i> is even,<br>there are 2 <i>n</i><br>petals.<br>If <i>n</i> is odd, there<br>are <i>n</i> petals. | sin is symmet<br>y-axis.<br>cos is symme<br><i>x</i> -axis. |                                             |                                             |
|                       |                                                                                                              |                                                             |                                             |                                             |

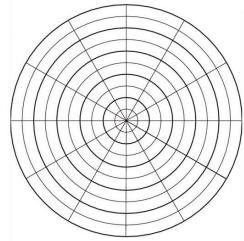

<u>Example 1</u>:  $r = 4 \sin \theta$ 





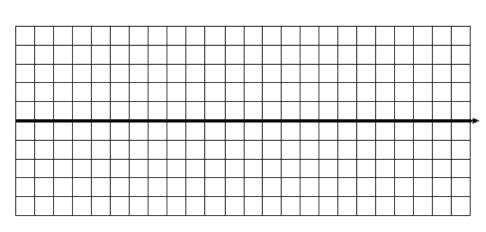

Shape of the Polar Curve:\_\_\_\_\_

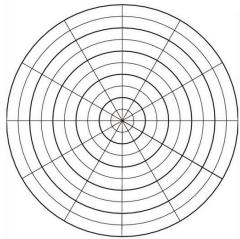

Example 2:  $r = 2 + 1.5\cos\theta$ 





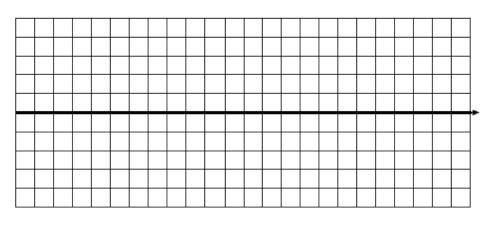

Shape of the Polar Curve:\_\_\_\_\_

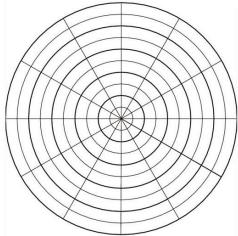

Example 3:  $r = 2 + 3\cos \theta$ 






Shape of the Polar Curve:\_\_\_\_\_


# Example 4: $r = 4 \sin 2\theta$






Shape of the Polar Curve:\_\_\_\_\_

Example 5:  $r = 2 \cos 3\theta$ 





Shape of the Polar Curve:\_\_\_\_\_

Example 6:  $r = 3 + 3\sin\theta$ 

Shape of the Polar Curve:\_\_\_\_\_

# 9.3 Switching Between Polar and Rectangular Forms

## **Objectives:**

• Convert between Polar and Rectangular Form

**Rectangular Form:** 

**Polar Form:** 

**Conversions:** 

From Rectangular to Polar

From Polar to Rectangular

<u>Examples:</u> Express each of the following in the opposite form

a. [-13, -70°]

b. (-8, -12)