Section 8.1: Geometric Vectors

Objectives:

- I can identify the magnitude and direction of a vector.
- I can add/subtract vectors using the parallelogram method.
- I can add/subtract vectors using the "tip to tail" (triangle) method.
- I can find the component form of a vector.

Definition:

A vector is a quantity that is defined by its ______ and _____.

Example 1:

Use a ruler and protractor to determine the **magnitude** and **direction** of the vector below:

Definition:

A zero vector has a magnitude of 0 and can go in any direction (a point at the origin).

Example 2: Draw a "zero vector".

Example 3:

Consider the vectors listed below. Use the vectors to solve the problems:

a. Name 2 vectors that are equal.

b. Name all of the parallel vectors.

c. Find the sum of $\mathbf{a} + \mathbf{f}$ using the parallelogram and triangle methods.

Example 5:

At a competition, a sailplane traveled forward at a rate of 8 m/s, and it descended at a rate of 4 m/s. Determine the magnitude of the resultant velocity of the sailplane.

Definition: Two or more vectors whose sum is a given vector are called **components** of the given vector.

Example 6:

A ship leaving port sails for 75 miles in a direction 35° north of due east. Find the magnitude of the vertical and horizontal components.

Example 7:

A piling for a high-rise building is pushed by two bulldozers at exactly the same time. One bulldozer exerts a force of 1550 pounds in a westerly direction. The other bulldozer pushes the piling with a force of 3050 pounds in a northerly direction.

- a. What is the magnitude of the resultant force upon the piling, to the nearest ten pounds?
- b. What is the direction of the resultant force upon the piling, to the nearest tenth?

Section 8.2: Algebraic Vectors

Objectives:

- I can find ordered pairs that represent vectors (component form).
- I can Add, subtract, multiply, and find the magnitude of vectors algebraically.

<u>Vectors as ordered pairs</u>: Vectors can be represented using ordered pairs. For example, (3, 5) can represent a vector in standard position. That means that the initial point is at (,) and the terminal point is at (,).

Definition: Two or more vectors whose sum is a given vector are called **components** of the given vector. Given initial point ______ and terminal point ______, find the magnitude:

Example 1:

A) Draw (3,5) in standard position and as a Triangle.

B) Shift the vector (3,5) over 6 units to the left, and 1 unit down. Where are the new initial and terminal points?

Example 2:

Write the ordered pair that represents the vector from (-5, 6) to (4, -2). Then find the magnitude of the vector.

Definitions: <u>Vector addition:</u> **a** + **b** =

<u>Vector subtraction:</u> $\mathbf{a} - \mathbf{b} =$

<u>Scalar multiplication:</u> $k\mathbf{a} =$

Example 3: Let $\mathbf{m} = \langle 5, -7 \rangle$, $\mathbf{n} = \langle 0, 4 \rangle$, and $\mathbf{p} = \langle -1, 3 \rangle$. Find each of the following:

a. **m** + **p**

b. **m** – **n**

c. 7**p**

d. 2m + 3n - p

Example 4:

Paramedics are moving a person on to a stretcher. Ms. Gonzalez is pushing the stretcher with a force of 135 newtons at 58° with the horizontal (from standard position). Mr. Howard is pulling the stretcher with a force of 214 newtons at 43° with the horizontal. What is the magnitude of the force exerted on the stretcher?

Definition:

A vector that has a magnitude of one unit is called a **unit vector**. A unit vector in the direction of the positive *x*-axis is represented by \mathbf{i} , and the unit vector in the direction of the positive *y*-axis is represented by \mathbf{j} .

So, $\mathbf{i} = \langle , \rangle$ and $\mathbf{j} = \langle , \rangle$. The zero vector, therefore, would be represented as $\mathbf{0} = 0\mathbf{i} + 0\mathbf{j}$.

Example 5: Write AB as the sum of unit vectors for $\mathbf{A} = (\mathbf{4}, -1)$ and $\mathbf{B} = (\mathbf{6}, \mathbf{2})$.

You try it!!

- 1. Write the ordered pair that represents the vector from (7, -3) to (-2, -1). Then find the magnitude of the vector.
- 2. Let $\mathbf{u} = \langle 1, -4 \rangle$ and $\mathbf{v} = \langle 0, 8 \rangle$. Find each of the following: a. $\mathbf{u} + \mathbf{v}$

b. **u** – **v**

c. $\frac{1}{2}$ v

d. 2u + 3v

3. Radiology technicians are moving a patient on an MRI machine cot. Ms. Jones is pushing the cot with a force of 120 newtons at 55° with the horizontal, while Mr. Michaels is pulling the cot with a force of 200 newtons at 40° with the horizontal. What is the magnitude of the force exerted on the cot?

Section 8.5: Applications with Vectors

Objectives:

- Solve problems using vectors and right triangle trigonometry.
- 1. A bull-rider has finished his competition ride and the two rodeo clowns are restraining the bull to return it to the paddocks. Suppose one clown is exerting a force of 270 newtons due north and the other is pulling with a force of 360 newtons due east. What is the resultant force on the bull?
 - a. Draw a labeled diagram that represents the forces.
 - b. Determine the resultant force.

c. Find the angle the resultant force makes with the east-west axis.

2. Tom works for a package delivery service. Suppose he is pushing a cart full of packages weighing 100 pounds up a ramp 8 feet long at an incline of 25°. Find the work done by gravity as the cart moves the length of the ramp. Assume that friction is not a factor.

What is the Law of Cosines formula?

3. A lighting system for a theater is supported equally by two cables suspended from the ceiling of the theater. The cables form a 140° angle with each other. If the lighting system weighs 950 pounds, what is the force exerted by each of the cables on the lighting system?

4. A Boeing 727 airplane, flying due east at 500 mph in still air, encounters a 70 mph tail wind acting in the direction 60° north of east. The airplane holds its compass heading due east but, because of the wind, acquires a new ground speed and direction. What are they?

Section 8.4: Perpendicular (Orthogonal) Vectors

Objectives:

- I can find the inner (dot) product of two vectors.
- I can find the cross products of two vectors.
- I can determine whether two vectors are perpendicular (orthogonal).

The **dot product** of $u = (u_1, u_2)$ and $v = (v_1, v_2)$ is: $\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2$.

Note the answer is a number, not a vector.

Example 1:

Calculate the dot product of the vectors below:

- a. $\mathbf{u} = (2, 3)$ and $\mathbf{v} = (7, -1)$.
- b. $\mathbf{u} = (-5, 7)$ and $\mathbf{v} = (3, 5)$.

Example 2:

Let $\mathbf{u} = (3, -5)$, $\mathbf{v} = (-2, 4)$ and $\mathbf{w} = (6, 7)$. Find the following answers. (Be careful when deciding if the answer will be a *number* or a *vector*.)

a. $(\vec{u} \cdot \vec{v})\vec{w} =$

b.
$$(\vec{u} + \vec{v}) \cdot \vec{w} =$$

The Angle in Between two vectors is: $\cos x = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|}$

<u>Example 3:</u> Find the angle between the pairs of vectors in *Example 1*.

Orthogonal (perpendicular) Vectors:

Activity:

Work together to find a simple equation to determine if two vectors are perpendicular.

- 1. If two vectors are orthogonal (perpendicular), what is the measure of the angle, x, between the two vectors?
 - 1. What is the $\cos x$?

x = _____

cos x = _____

 $\cos x = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| |\vec{v}|}$

2. Use the "cos x" you just found in #2, and the formula for the angle between to determine a NEW formula for perpendicular vectors.

Example 4: Verify that the following vectors are perpendicular: $\langle 4, 2 \rangle \langle 5, -10 \rangle$ Example 5: Verify that the following vectors are parallel: $\langle -3, 6 \rangle \langle 5, -10 \rangle$

Example 6: Determine whether the following vectors are parallel, orthogonal, or neither.

#	Vectors	Work	Parallel, Orthogonal, or neither?
Α	u = (8, 10) and w = (5, 4)		
B	$\mathbf{u} = (8, 10) \text{ and } \mathbf{w} = (1, 1.25)$		
C	$\mathbf{u} = (8, 10) \text{ and } \mathbf{w} = (-4, -5)$		
D	u = (8, 10) and w = (-20, 16)		
Е	$\mathbf{u} = (8, 10) \text{ and } \mathbf{w} = (30, -24)$		
F	$\mathbf{u} = (-2, 4, 8) \text{ and } \mathbf{w} = (16, 4, 2)$		

Example 7:

Recall that perpendicular lines have opposite reciprocal slopes. Suppose that vector $\mathbf{u} = (3, 4)$.

a. Find two vectors that are orthogonal (perpendicular) to \mathbf{u} .

b. "Scale-change" your answers from part (a) so that the vectors have a length of 10.

Section 8.6: Vectors and Parametric Equations

Objectives:

- Write parametric equations of lines.
- Graph parametric equations.

Recall: Slope Intercept Form: y = mx + b**Point-Slope Form:** $y - y_1 = m(x - x_1)$

Definition (Parametric equation of a line): A line through $P_1(x_1, y_1)$ that is parallel to the vector $\vec{v} = (v_1, v_2)$ $x = x_1 + tv_1$ $y = y_1 + tv_2$

- 1. Consider the vector **v**.
 - a. Sketch the vector that is represented by the vector from (-2, 5) to (7, -3).
 - b. Give the component representation of the standard position vector.
 - c. Sketch the vector in standard position.
 - d. Find the magnitude and direction of **v**.

2. Consider v = (3, 7).

- a. Sketch v.
- b. Sketch **u** such that **u** starts at (-5, 8) and is parallel to vector **v**.

- 3. Vector **v** has a length of 6 and is in the direction of 45° west of north.
 - a. Give the component representation of the vector.
 - b. Sketch **v** with an initial point of (5, -3).
 - c. Identify the endpoint of the vector drawn in part b.

- 4. Consider the vector drawn below:a. Give the initial point.
 - b. Give the terminal point.
 - c. Give the component representation of the vector in standard form.

- 5. Consider the line given by the parametric equations below. Graph the line. x = -8 + 12t
 - y = -3 + 7t
 - a. Sketch a new line that contains the point (-4, 1) and is parallel to the line above.
 - b. Write the equation for this line in parametric form.
 - c. Write the equation of the line in **point-slope form**.

- 6. A vector $\mathbf{w} = (w_1, w_2)$ in standard position is parallel to $\mathbf{u} = (3, 1)$ and twice as long. Find two sets of values for (w_1, w_2) .
- 7. Find a vector $\mathbf{w} = (w_1, w_2)$ in standard position that is parallel to $\mathbf{v} = (3, -4)$ and has a length of 30.
- 8. Find a vector $\mathbf{w} = (w_1, w_2)$ in standard position that is parallel to $\mathbf{u} = (-5, -12)$ and has a length of 32.5.
- 9. Write a vector that is perpendicular (orthogonal) to the vector (6, -5).

10. Write a vector that is perpendicular (orthogonal) to the line with parametric equations: x = -5 + 8ty = 9 - 3t.

