15.9 Area Under the Curve (Riemann)

Objectives:

- Find areas under graphs of polynomial functions.

Example1:

If you travel for 3.5 hours at a constant speed of 50 mph , how far did you travel?
Remember that the formula $d=r t$ gives the total distance traveled.

Example 2:

If you travel 3.5 hours at a constant speed of 50 mph and then 2 hours at a constant speed of 30 mph , how many miles did you travel?

Since we know it is nearly impossible to travel at a "constant" speed, our driving situation would most likely look more like the picture below. We can use sigma notation to help us find the area (distance traveled).

Example 3:

A car accelerates from 0 to 88 feet per second with a speed of $g(x)=-.88(x-10)^{2}+88$ feet per second after x seconds. Estimate the distance that the car travels in 8 seconds by dividing the graph into 4 sub-intervals.

Example 4:

A car accelerates from 0 to 60 miles per hour (88 feet per second) in 10 seconds. If the acceleration is constant, how far will the car travel (in feet) in this time? (Sketch a picture).

Riemann Sums

Example 5:

A graph of $h(x)$ is given below. Break the interval from 0 to 10 into 5 subintervals of equal length. Evaluate $\sum_{i=1}^{5} h\left(z_{i}\right)$, estimating each $h\left(z_{i}\right)$ to the nearest integer when using:
a. Left endpoint:
b. Mid-point:
c. Right endpoint:

15.10 Exact Area Under the Curve

Objectives:

- Find the exact area under a curve.
- Find antiderivatives of functions.
- Find indefinite integrals of polynomial functions.

Anatomy of an integral:

$$
\int_{a}^{b} f(x) d x
$$

Example 1:

Express the area of the shaded region below with an integral.

Example 2:

Evaluate: $\int_{2}^{8}\left(\frac{1}{2} x+3\right) d x$

Example 3:

Find the exact area of $\int_{-2}^{3}(-4) d x$.

Finding an "anti-derivative":

Evaluating the integral without a graph is needed when we are looking for the area underneath a curve. For example, finding the area under $y=x^{2}$ would be impossible to do without using approximations. This is where we would use an antiderivative (indefinite integrals).

Power Rule: $\int x^{n} d x=\frac{x^{n+1}}{n+1}+c$
Although it looks complicated, the process is really quite simple ... try some Θ

Example 5:

a. $\int 5 x^{2} d x$
b. $\int\left(4 x^{5}+7 x^{2}-4 x\right) d x$
c. $\int 2 x^{3}-4 x^{2}+7 x-4 d x$

15.11 The Fundamental Theorem of Calculus

Objectives:

- Use the Fundamental Theorem of Calculus to evaluate definite integrals of polynomial functions.
- Find values of integrals of polynomial functions.

Definite Integrals:

$$
\int_{a}^{b} f(x) d x=f(b)-f(a)
$$

Example 1:

Evaluate:
a. $\int_{0}^{5} x^{2} d x$
b. $\int_{-2}^{3}\left(x^{2}+2 x\right) d x$
c. $\int_{-1}^{1}\left(x^{3}-2\right) d x$
d. $\int_{0}^{24}\left(3 x^{2}+3 x+3\right) d x$

15.12 Writing Integrals from Regions

Objectives:

- Write and evaluate integrals from a given region

Example 1:

Find the area of the shaded region.

Example 2:

Find the area of the shaded region.

Example 3:

Find the area of the shaded region.

