Section 11.1: Real Exponents

Objectives:

- I can use the properties of exponents.
- I can evaluate and simplify expressions containing rational (fraction) exponents.
- I can solve equations containing rational (fraction) exponents.

Definition: A number is written in scientific notation when it is in the form $a \times 10^n$, where *a* is between 1 and 10 and *n* is an integer.

Example 1:

At their closest points, Mars and Earth are approximately 7.5 x 10^7 km apart.

- a. Write this distance in standard form.
- b. How many times farther is the distance Mars Pathfinder traveled than the minimum distance between Earth and Mars? (the pathfinder traveled 4.013×10^8)

Graphing Calculator Exploration

Graph each of the following sets of equations on the same screen. Use the graphs and tables to determine whether Y1 is equivalent to Y2 or Y3.

- 1. $Y1 = x^2 x^3$, $Y2 = x^5$, $Y3 = x^6$
- 2. $Y1 = (x^2)^3$, $Y2 = x^5$, $Y3 = x^6$
- 3. Make a conjecture (guess) about the value of $a^m a^n$.
- 4. Make a conjecture (guess) about the value of $(a^m)^n$.
- 5. Use your graphing calculator to investigate the value of an expression like

$$\left(\frac{a}{b}\right)^m$$
. What do you observe?

Exponent Rules 🕲

Property	Definition
Product	
Power of a Power	
Power of a Quotient	
Power of a Product	
Quotient	
Rational Exponent	
Negative Exponent	
Zero Exponent	

Example 2: Evaluate the expressions: a. $125^{1/3}$

b.
$$(s^2t^3)^5$$

c.
$$\left(\frac{2}{5}\right)^{-1}$$

d.
$$\left(\frac{x^3y}{(x^4)^3}\right)$$

- e. $(81c^4)^{1/4}$
- f. $625^{3/4}$
- g. Simplify: $\sqrt{r^7 s^{25} t^3}$
- h. Solve: $734 = x^{3/4} + 5$

Section 11.2 &4: Exponential and Logarithmic Functions (Properties)

Objectives:

- I can solve problems involving exponential growth and decay.
- I can evaluate expressions involving logarithms.
- I can solve equations and inequalities involving logarithms.

Definition: An **exponential function** is of the form $y = b^x$ where the base *b* is a positive real number and the exponent is a variable.

Graphing Calculator Exploration

Directions: Graph $y = b^x$ for b = 0.5, 0.75, 2, and 5 on the same screen. Then answer the questions below:

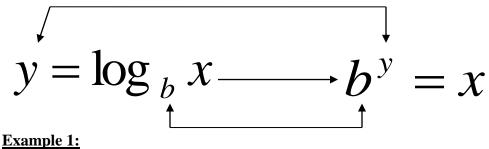
- 1. What is the range of each exponential function?
- 2. What point is on the graph of each function? (What point do they share in common?)
- 3. What is the end behavior of each graph?
- 4. Do the graphs have any asymptotes (horizontal or vertical)?
- 5. Is the range of every exponential function the same? Explain.
- 6. Why is the point at (0, 1) on the graph of every exponential function?
- 7. For what values of *a* is the graph of $y = a^x$ increasing and for what values is the graph decreasing? Explain.
- 8. Explain the existence or absence of the asymptotes in the graph of an exponential function.

Characteristics of an Exponential Function:

	b > 1	0 < b < 1
Domain		
Range		
y-intercept		
Behavior		
Horizontal Asymptote		
Vertical Asymptote		

What happens when b = 1?

Anatomy of a logarithm:



Write each expression in exponential form:

a.
$$\log_{125} 25 = \frac{2}{3}$$
 b. $\log_8 2 = \frac{1}{3}$

Example 2:

Write each equation in logarithmic form:

a.
$$4^3 = 64$$
 b. $3^{-3} = \frac{1}{27}$

Example 3:

Evaluate the expression $\log_7 \frac{1}{49} = y$.

Example 4:

How long would it take for 256,000 grams of Thorium-234, with a half-life of 25 days, to decay to 1000 grams?

Properties of Logarithms

Property	Definition
Product	
Quotient	
Power	
Equality	

Example 5:

Solve each equation:

a.
$$\log_p 64^{\frac{1}{3}} = \frac{1}{2}$$

b. $\log_4(2x+11) = \log_4(5x-4)$

c. $\log_{11} x + \log_{11} (x+1) = \log_{11} 6$

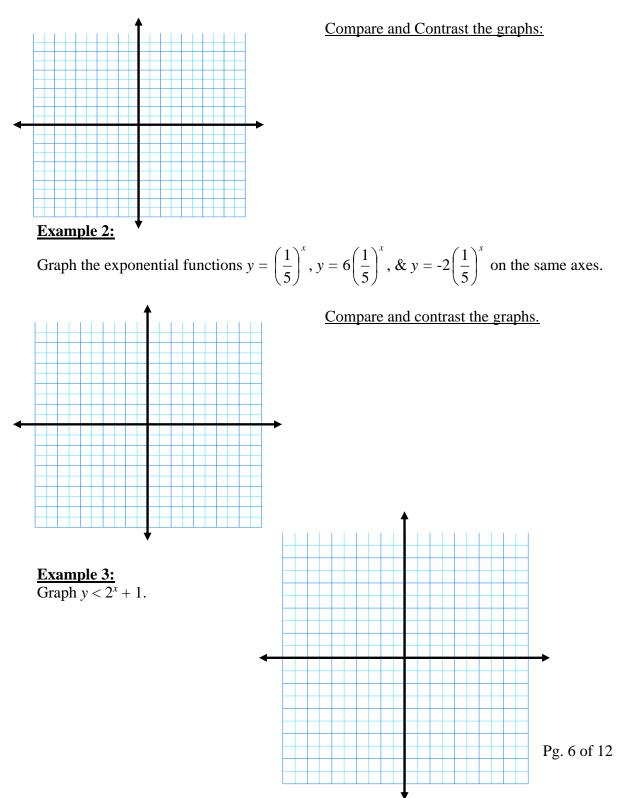
Section 11.2 & 4: Exponential and Logarithmic Functions (Graphing)

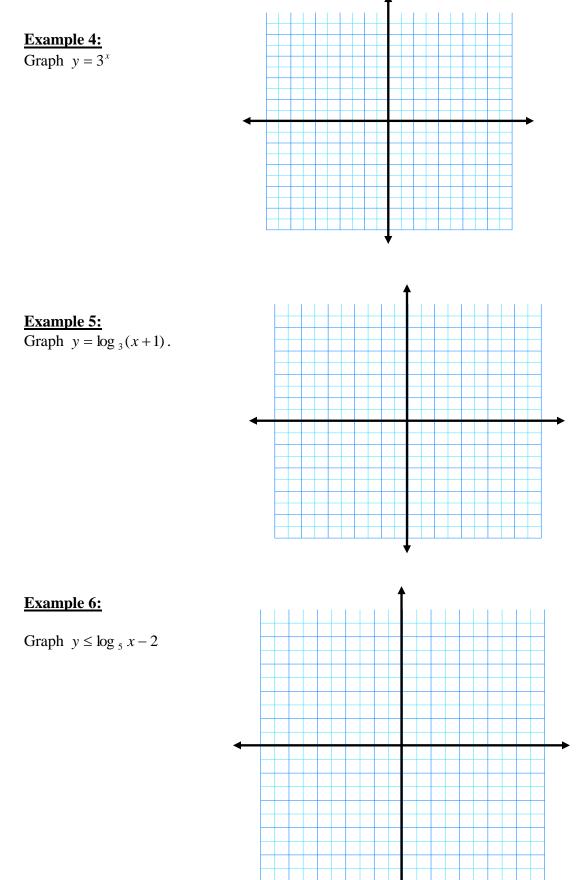
Objectives:

- Graph exponential functions and inequalities.
- Graph logarithmic functions and inequalities.

Example 1:

Graph the exponential functions $y = 4^x$, $y = 4^x + 2$, and $y = 4^x - 3$ on the same set of axes.



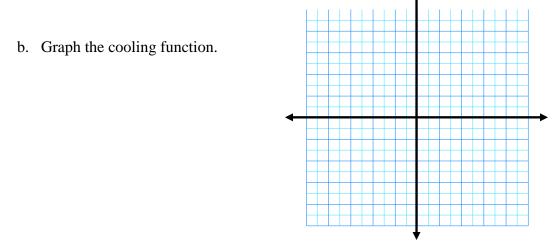


Section 11.2 & 4: Exponential and Logarithmic Functions (Application)

Example 1:

According to Newton's Law of Cooling, the difference between the temperature of an object and its surroundings decreases in time exponentially. Suppose a certain cup of coffee is 95°C and it is in a room that is 20°C. The cooling for this particular cup can be modeled by the equation $y = 75(0.875)^t$ where y is the temperature difference and t is the time in minutes.

a. Find the temperature of the coffee after 15 minutes.



Definition: The equation $A = P\left(1 + \frac{r}{n}\right)^{nt}$, where A is the final amount, P is the initial

(principal) amount, r is the annual interest rate, n is the number of times interest is paid/compounded per year, and t is the number of time periods, is used for modeling compound interest.

Example 2:

Suppose that a researcher estimates that the initial population of varroa in a colony is 500. They are increasing at a rate of 14% per week. What is the expected population in 22 weeks?

Example 3:

Determine the amount of money in a money market account providing an annual rate of 5% compounded daily if Marcus invested \$2000 and left it in the account for 7 years.

Section 11.5: Common Logarithms

Objectives:

- I can find common logarithms of numbers.
- I can solve equations and inequalities using common logarithms.
- I can solve real-world applications with common logarithmic functions.

Definition: A common logarithm is a logarithm with a base of 10.

Example 1:Given that $\log 7 = 0.8451$, evaluate each logarithm.a. $\log 7,000,000$ b. $\log 0.0007$

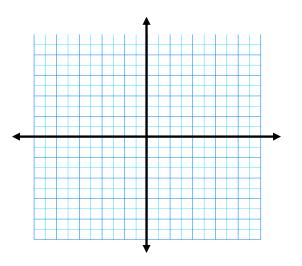
Example 2:

Evaluate each expression.

a. $\log 5(2)^3$

b.
$$\log \frac{19^2}{6}$$

Example 3: Graph $y > \log(x - 4)$.



Definition: If *a*, *b*, and *n* are positive numbers and neither *a* nor *b* is 1, then the following equation is true: $\log_{a} n = \frac{\log_{b} n}{\log_{b} a}$.

Example 4:

Find the value of $\log_{9} 1043$ using the change of base formula.

Example 5: Solve the following equations: a. $6^{3x} = 81$

b. $5^{4x} = 73$

c. $8^{4x} = 3$

Section 11.3 & 6: The Number *e* and Natural Logarithms

Objectives:

- I can use the exponential function $y = e^x$.
- I can find natural logarithms of numbers.
- I can solve equations and inequalities using natural logarithms.
- I can solve real-world applications with natural logarithms.

Definition: The formula for **exponential growth and decay** (in terms of *e*) is $A = Pe^{rt}$ where *A* is the final amount, *P* is the initial (principal) amount, *r* is the rate constant, and *t* is time. (HINT: Look for the phrase "compounded continuously" when using this formula.)

On your calculator, find the *e* button. What number does the calculator give you? _____.

The number *e* is JUST A NUMBER... just like π is JUST A NUMBER.

Example 1:

Compare the balance after 25 years of a \$10,000 investment earning 6.75% interest compounded continuously to the same investment compounded semiannually.

Example 2:

According to Newton, a beaker of liquid cools exponentially when removed from a source of heat. Assume that the initial temperature is 90°F and that r = 0.275.

- a. Write a function to model the rate at which the liquid cools.
- b. Find the temperature of the liquid after 4 minutes.

Definition: A **natural logarithm** is a logarithm with a base of *e* and is denoted ln *x*.

Example 1:

Convert $\log_{6} 254$ to a natural logarithm and evaluate.

Example 2: Solve: $6.5 = -16.25 \ln x$

Example 3: Solve each equation or inequality by using natural logarithms. b. $6^{x^2-2} < 48$ a. $3^{2x} = 7^{x-1}$