
1. Graph 
$$y = 3 + 2\cos(3x + \frac{3\pi}{2})$$



Period = 
$$\frac{2\pi}{3}$$

Phase shift = 
$$-\frac{\pi}{2}$$

3. Identify the domain for the functions 
$$\sin x / \cos x$$
,  $\tan x$ ,  $\csc x$ ,  $\sec x$ , and  $\cot x$ 

3. Identify the domain for the functions  $\sin x$ ,  $\cos x$ ,  $\tan x$ ,  $\csc x$ ,  $\sec x$ , and  $\cot x$ .

R

R

R

R x

1. Prove 
$$\frac{\cos x + 1}{\tan^2 x} = \frac{\cos x}{\sec x - 1}$$

Cross Mulhip

$$(\operatorname{cos} X + 1)(\frac{1}{\operatorname{cos} X} - 1) = (\frac{\operatorname{Sih}^2 X}{\operatorname{Cos}^2 X})(\operatorname{cos} X)$$

ि।

$$\frac{1 - \cos x + \frac{1}{\cos x} - 1 = \frac{\sin^2 x}{\cos x}}{-\frac{\cos^2 x + 1}{\cos x}} = \frac{\sinh^2 x}{\cos x}$$

2. Using the formula for  $\cos (x + y)$ ... find the  $\cos 105$  degrees.

3. Solve  $2 \sin^2 x + \sin x - 1 = 0$ 

2u2+4-1=0

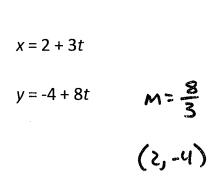
ces (45+60)

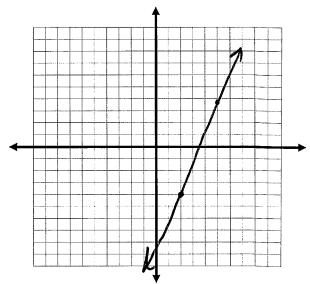
Principal values =

$$0 \le x \le 360 =$$

4. Using the formula  $\sin 2x = 2\sin x \cos x$  find  $\sin 2x$  if  $270 \le x \le 360$  and

$$\sin x = -3/4$$
.


5.  $\tan(\cos^{-1}(-\frac{\sqrt{3}}{2}))$  Quadrant 2.




A boat is set to travel at a speed of 12 knots in the direction 50° west of north. The current is moving at a speed of 10 knots in the direction 4° south of east. Find the x and v components of the vector representing the boat's actual velocity relative to the land.

(-9.19, 7.71) + (9.98, -.7) = (.79, 7.01)

2. Graph the line represented by the parametric equations:





- 3. Given the formula  $\cos x = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|}$ , find the angle, x, between u and w.  $U = (-4,2) \quad w = (-3,-4)$   $\overrightarrow{u} \cdot \overrightarrow{w} = (-4)(-3) + 2(-4) = 4$   $\overrightarrow{v} \cdot \overrightarrow{v} = (-4)(-3) + 2(-4) = 4$   $\overrightarrow{v} \cdot \overrightarrow{v} = (-4,2) \quad (-3,-4)$ |21 = J16+4 = J20 |21 = J9116 = 5
- 4. Find the magnitude **and** direction of the vector (-6,2).

My: \square Dir. 6-1(\frac{2}{6}): 18.40

5. Find two vectors perpendicular to the vector (5, -7)

(7,5) m (-7,-5)

# Adv. Math Exam Review Chapter 11...... FAB FIVE!!!!!

1. Solve. 
$$\log 0.1^{(2x+8)} \ge \log 7^{(x+4)}$$
  
 $(2x+8) \cdot \log .1 > (x+4) \cdot \log .7$   
 $-2x-8 > .8451x + 3.38$   
 $-2.8451x > .11.38$ 

2. Solve. 
$$e^{2x} > 20$$
 $\frac{2x}{2} > \frac{1}{2}$ 
 $(x > 1.4979)$ 

3. Find the balance after 11 years for a \$7,500 investment earning 4.5% interest compounded continuously.

4. Solve using log properties:  $\log_4 3 + \log_4 x = \log_4 45$ 

$$\log_4 3x = \log_4 4S$$

$$3x = 4S$$

$$X = 1S$$

5. Solve:  $6^{(x-2)} = 30$ 

$$(x-z) \log 6 = \log 30$$
  
 $x-2 = \frac{\log 30}{\log 6}$   
 $x-2 = 1.8982$   
 $x = 3.8982$ 

1. Find the 2nd derivative of  $y = -3x^5 + 7x^2 - 12x + 5$ .

2. Find the derivative of  $\frac{x^2-2x}{e^x}$ 

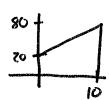
$$\frac{(e^{x})(2x-2)-(x^{2}-2x)(e^{x})}{(e^{x})^{2}}$$

$$\frac{(e^{x})^{2}}{(e^{x})^{2}}$$

$$\frac{(e^{x})^{2}}{(e^{x})^{2}}$$

$$\frac{(e^{x})^{2}}{(e^{x})^{2}}$$

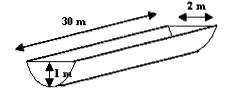
3. Find the instantaneous velocity and instantaneous acceleration of an object travelling on the path of  $y = 4x^3 + 2x^2 - 5x + 4$  at x = 2 seconds.


4. Evaluate  $\lim_{x \to 3} \frac{x^2 - 3x - 10}{x - 5}$ 

$$\lim_{x \to 3} \frac{(x-5)(x+2)}{(x-5)} = \lim_{x \to 3} x+2 = 3+2 = 5$$

5. Find the derivative of  $y = \ln(\sin(4x + 2))$ .

# energe s:

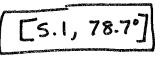

1. A car accelerates at from 20mph to 80mph in 10 seconds. How far did the car travel in 10 seconds.



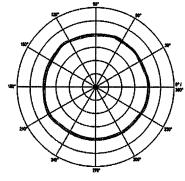
2. Evaluate  $\int_{-1}^{5} (x^2 + 1) dx$ 

$$\frac{x^3}{3} + x = \frac{5}{3} + \frac{140}{3} - \frac{(-4)}{3} = \frac{144}{3}$$

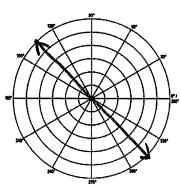
3. A construction firm needs to fill in a parabolic trench that is 30 meters long. How much soil will the company need to completely fill the trench if its dimensions are 1 meter deep by 2 meters wide? Show all work!




$$\int_{-1}^{1} (1-x^2) dx = x-\frac{x^3}{3} + \int_{-1}^{1} (\frac{2}{3}) - (-\frac{2}{3}) = \frac{4}{3}$$


4. Evaluate  $\int_{-2}^{3} (x^2 + 2x) dx$ 

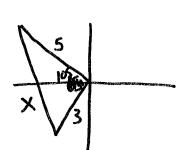
# Garleton S


1. Write (1, 5) in polar form.



2. Graph: r = 4




3. Graph:  $\theta = \frac{2\pi}{3}$ 



4. Write  $[-4,75^{\circ}]$  in rectangular form.

5. Find the distance between the two points with the given polar coordinates:

$$P_1[5, 140^{\circ}]$$
 and  $P_2[3, -115^{\circ}]$ 

