Name _____

Chapter 6: Graphs of the Trigonometric Functions

1) State the amplitude, period, phase shift and vertical shift of $y = 3\cos(\frac{\theta}{3}) + 2$. Then graph it.

2) State the amplitude, period, phase shift and vertical shift of $y = -2\sin(3\theta + \pi)$. Then graph it.

3) Write an equation for the sine function with an amp 2.4, period 8.2, phase shift $\frac{\pi}{3}$, and a vertical shift 0.2.

Chapter 7: Trigonometric Identities and Equations

- 4) No Calculator: Solve $2\sin^2 x \cos x 1 = 0$, over the set of real numbers.
- 5) No Calculator: Simplify the expression and state the domain: $\sin x \sec x =$

6) No Calculator: Solve over the set of real numbers $(\sin x + 1)(\tan x - 1) = 0$

7) No Calculator: Solve over the set of real numbers $\cos 2x + 7\sin x - 4 = 0$

8) No Calculator: Solve over the set of real numbers $\cos x = 0$

9) No Calculator: Solve over the set of real numbers $\sin 2x = \frac{1}{2}$

10) Given
$$\frac{\pi}{2} \le x \le \pi$$
 and $\cos x = -\frac{5}{13}$, find $\csc x$.

11) Suppose
$$\frac{\pi}{2} \le x \le \pi$$
 and $\sin x = \frac{5}{13}$. Also suppose $0 \le y \le \frac{\pi}{2}$ and $\cos y = \frac{3}{5}$.
a. Find $\sin (x - y)$.
b. Find $\cos (x - y)$.

12) Suppose x and y are on the intervals $\frac{\pi}{2} < x < \pi$ and with $0 < y < \frac{\pi}{2}$, with $\cos x = -\frac{1}{3}$ and $\sin y = \frac{2}{5}$. a. Find $\cos(x + y)$

b. Find sin (x - y)

c. Find sin (2x)

d. Find cos (2y)

e. Find tan y

13) Find $\cos(345^{\circ})$.

14)
$$\tan^{-1}(-\frac{\sqrt{3}}{3})$$

15)
$$\sin^{-1}(-\frac{\sqrt{3}}{2})$$

16)
$$\cos^{-1}(-\frac{1}{2})$$

17) No calculator: Give the exact value of $\cos \frac{5\pi}{12}$

18) No calculator: Evaluate $\cos(\sin^{-1}\left(\frac{5}{7}\right))$

19) Give the exact value for $\sin(\sec^{-1}(-\frac{12}{7}))$

20) No Calculator: Evaluate
$$tan(sin^{-1}(-\frac{\sqrt{3}}{2}))$$

Chapter 8: Vectors and Parametric Equations

- 21) Using the vector, v, from (8, 3) to (-2, -4), answer the following questions:a) Draw the vector v.
 - b) Draw the vector in standard position.
 - c) Write the components of v.
 - d) Write v as the sum of unit vectors.
 - e) Write a vector that is orthogonal to v.
- 22) Graph the line with parametric equations: x = 5 2t and y = -3 + 4t.

24) Write the parametric equations for the line through (1, -4) that is orthogonal to the line with parametric equations

x = 3 - 4t and y = -3 + 7t.

25) Find the magnitude and direction of the vector that has initial point (5, -3) and terminal point (6, 1) **Hint**: Put in

standard position first.

26) Find the measure of the angle between $\mathbf{s} = (-1, 3)$ and $\mathbf{t} = (-2, -8)$.

27) Given vector $\mathbf{k} = (-1, 2)$ and vector $\mathbf{v} = (10, 5)$, determine whether the two vectors are parallel, perpendicular, or

neither.

28) A boat travels at a speed of 75 mph at 26° north of east. It encounters a 10 mph current going 32° south of east.

Estimate the resultant speed of the boat.

Chapter 9: Polar Coordinates

29) Find the 3 other polar coordinates that represent [5, -30°].

30) Given the following polar coordinate, find it's equivalent rectangular coordinate. [-5, 45°].

31) Write (-2, -3) in the polar form.

Chapter 15A: Derivatives

- 32) The height (in feet) after *t* seconds of a batted ball with initial vertical velocity of 60 ft/sec is given by $h(t) = 60t 16t^2$.
 - a. Find the average vertical velocity from time 2 seconds to time 3 seconds (include units).
 - b. Find a formula for the slope of the **<u>secant</u>** line from time *t* to time $t + \Delta t$.
 - c. Find a formula for instantaneous velocity.
 - d. What is the instantaneous velocity at t = 2? (Include units)
 - e. What is the instantaneous acceleration at t = 2? (Include units)

33) Given
$$f(x) = \frac{-8x^2}{\sin x}$$
, find $f'(x)$.

34) Use the limit definition of the derivative to calculate f'(x) for f(x) = 4x + 5. Show all work.

35) Write the equation of the tangent line for the function $f(x) = 4x^3 + 5x^2 - 10$ at x = 2. Show all work in determining this equation.

36) Consider the function graphed at the right. Use the geometric definition of the derivative to calculate g'(0).

			· y					1
_			4			_	-	
				_		ť	ŀ	-
÷		Η	7		t	7	-	
		• 1				ĺ.		X
		1						
_		V			-	-		-
			-1	_				-
	-							

37) Find a formula to calculate the slope of the line tangent to the function $f(x) = (6x+8)\cos x$.

38) Given $f(x) = \ln(12x + 2x^2)$, find f'(x).

Chapter 15B: Integrals

39) No Calculator: Evaluate each A) $\int_{3}^{7} (x+3)dx + \int_{1}^{3} (-x)dx$

B)
$$\int_{0}^{1} (\sqrt{1-x^2}) dx + \int_{0}^{6} (x^2) dx$$

40) For the function $f(x) = x^2 + 1$ Estimate the area bounded by the x-axis, y-axis, f(x) and x = 20 by partitioning the interval from 0 to 20 into 4 equal subintervals of equal length and using $f(z_i)$ where z_i is the value of the right endpoint. Recalculate using z_i being the value of the left endpoint.

41) Given
$$\int_0^5 (x^2 + 3) dx - \int_0^4 (x^2 + 3) dx$$
.

a) Use the properties of integrals to write the expression as a single integral.

b) Evaluate the integral.

- 42) Given the velocity function $f(x) = .5x^2$ on the interval $0 \le x \le 2$:
 - a) Sketch a picture of the situation.

b) Use Riemann Sums to estimate $\sum_{i=1}^{4} (f(z_i)\Delta x)$ where z_i is the right endpoint of the *i* the subinterval.

Chapter 11: Exponential and Logarithmic Functions

43. Simplify each expression:

a.
$$\sqrt{16x^2y^7}$$

- b. $\sqrt[3]{54a^4b^3c^8}$
- c. $(3^2 c^3 d^5)^{\frac{1}{5}}$
- d. $(3x)^2 (3x^2)^{-2}$

- 45. A city's population can be modeled by the equation $y = 17492e^{-0.027t}$, where *t* is the number of years since 1996.
- a. What was the city's population in 1996?
- b. What is the projected population in 2007?
- 46. Solve each equation:

a.
$$\log_x 36 = 2$$

b. $\log_2(2x) = \log_2 27$
c. $\log_5 x = \frac{1}{3} \log_5 64 + 2 \log_5 3$

47. Find the value of each logarithm using the change of base formula.

a.
$$\log_6 431$$
 b. $\log_{0.5} 78$

48. Use natural logarithms to solve each equation.

a.
$$2.3^x = 23.4$$

b. $\log_{4} 16 = x$

c.
$$5^{x-2} = 2^x$$
 d. $519 = 3e^{0.035t}$

